American Gas Association
Safety & Occupational Health Committee

Natural Gas Workers and Natural Gas Fires
Observations and Analysis of Heat Intensity, Escape Time, Extinguish Time and Flame Resistant Garments

Brian E. Foy
DuPont Company

Christopher W. Newton
DuPont Company

Michael R. Anderson
National Fuel Gas Company
The American Gas Association’s (AGA) Operations and Engineering Section provides a forum for industry experts to bring their collective knowledge together to improve the state of the art in the areas of operating, engineering and technological aspects of producing, gathering, transporting, storing, distributing, measuring and utilizing natural gas.

Through its publications, of which this is one, AGA provides for the exchange of information within the natural gas industry and scientific, trade and governmental organizations. Many AGA publications are prepared or sponsored by an AGA Operations and Engineering Section technical committee. While AGA may administer the process, neither AGA nor the technical committee independently tests, evaluates or verifies the accuracy of any information or the soundness of any judgments contained therein.

AGA and DuPont disclaim liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of or reliance on AGA publications. AGA and DuPont make no guarantee or warranty as to the accuracy and completeness of any information published therein. The information contained therein is provided on an “as is” basis and AGA and DuPont make no representations or warranties including any expressed or implied warranty of merchantability or fitness for a particular purpose.

In issuing and making this document available, AGA and DuPont are not undertaking to render professional or other services for or on behalf of any person or entity. Nor is AGA and DuPont undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

AGA and DuPont has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does AGA and DuPont list, certify, test or inspect products, designs or installations for compliance with this document. Any certification or other statement of compliance is solely the responsibility of the certifier or maker of the statement.

AGA and DuPont do not take any position with respect to the validity of any patent rights asserted in connection with any items that are mentioned in or are the subject of AGA publications, and AGA and DuPont disclaim liability for the infringement of any patent resulting from the use of or reliance on its publications. Users of these publications are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Users of this publication should consult applicable federal, state and local laws and regulations. AGA and DuPont does not, through its publications intend to urge action that is not in compliance with applicable laws, and its publications may not be construed as doing so.

Changes to this document may become necessary from time to time. If changes are believed appropriate by any person or entity, such suggested changes should be communicated to AGA in writing and sent to: Operations & Engineering Section, American Gas Association, 400 North Capitol Street, NW, 4th Floor, Washington, DC 20001, U.S.A. Suggested changes must include: contact information, including name, address and any corporate affiliation; full name of the document; suggested revisions to the text of the document; the rationale for the suggested revisions; and permission to use the suggested revisions in an amended publication of the document.

This document is intended for the scientific community and for discussion purposes.

Copyright © 2018, American Gas Association, All Rights Reserved.

Copyright © 2018, DuPont, All Rights Reserved.
Thank You

Philadelphia Gas Works Spire Inc.
Xcel Energy Washington Gas Light Co.
ONE Gas, Inc. Avista Utilities
Vectren Co. Consolidated Edison, Inc.
UGI Utilities Inc. Chesapeake Utilities Co.
Columbia Gas of PA – NiSource Questar / Dominion Energy
National Fuel Gas Company DuPont Company
Problems:

- No consensus standards for PPE
- Hazards are unquantified
- Lingering industry questions
Solutions:

• Quantify the Hazards
• “Slay the FR Dragon”
Hazards of Natural Gas Fires

Heat Intensity + Exposure Time
Four Unique Studies:

• Escape Time
• Extinguish Time
• Heat Intensity
• FR Garment Testing
Available at the American Gas Association Website at:
https://www.youtube.com/watch?v=FJoi1TyvhtI&feature=youtu.be
Four Unique Studies:

• Escape Time
• Extinguish Time
• Heat Intensity
• FR Garment Testing
Escape Time Testing

Purpose
To understand the time required for a worker to escape an excavation.

Scope
Establish the time necessary for workers to move a safe distance away from a fire.
Three variables:
- Excavations
 - 4’ deep sloped
 - 4’ deep w/shoring box
 - 6’ deep w/shoring box
 - 4’ deep pit w/concrete walls and sand bottom
- Demographics - 5 different employees
- PPE – 5 different configurations
 - standard workwear
 - lightweight FR PPE
 - heavyweight FR PPE
 - heavyweight FR PPE with added respirator configuration
 - welding gear

Starting Conditions:
- Worker on one knee at a buried pipe within the excavation
- Workers were engaged in simulated job activities
- Stopwatch begins with the “Go” command
- Ladder used in the 6’ excavation as the escape mechanism

End Condition:
- When the worker crosses a point 10’ away from the pipe centerline.
Greatest Learnings

- Based on observations, it appears 5.4 seconds to 6.8 seconds is typically required to escape from excavations.

- Personnel demographics resulted in high escape time variability.

- The deeper the excavation, the longer the escape time.

- It appears restricted vision, in this case as a result of a respirator, caused test subjects difficulty in looking down to find the 1st step on the ladder. Missteps increased escape time by approximately 1 second.
Fire Extinguisher Time Testing

Purpose
To understand the time it may take a standby person to extinguish a fire in an excavation.

Scope
Create excavation fire scenarios and measure the time to extinguish
Five Variables:
- Dry powder-type CO₂ fire extinguishers, 20# and 30#
- Two powder agent types
 - Sodium bicarbonate based
 - Potassium bicarbonate based
- Demographics – 4 different workers
- Excavation Depth – 4’ and 6’ excavations
- Leak scenarios – 7/8” diameter hole at 12” WC and 3/8” diameter hole at 55 psi

Starting Conditions:
Worker in full FR PPE including balaclava, full visor, hardhat and gloves
Standing at a 10’ distance upwind from leak location
Fire extinguisher upright on ground next to worker
Fire initiated within the excavation
Timing starts with a “Go” command or the onset of combustion
Once an extinguisher’s CO₂ cartridge was activated, the extinguisher was re-used until empty; in these circumstances, workers simulated depressing the activation button

End Condition:
Test timing ended when flames were no longer visible
Extinguish Time

Total including trainer and outlier is 5.79 +/- 0.44
Total excluding trainer and outlier is 6.36 +/- 0.71
Greatest Learnings

- Once powder flow was initiated to the fire, the fire quickly went out during every test. There was no significant difference in time needed to extinguish a fire between the two extinguisher weights or powder types. Despite the broad range of variables involved in the tests, times required to extinguish fires were consistent.

- Operator error was the dominant source of variability in times required to extinguish fires. With the operator error data removed from the calculation, average extinguishing time was 5.97 +/- 0.24 seconds. With operator error data included, average extinguishing time was 6.36 +/- 0.71 seconds.
Fire Intensity Testing

Purpose
To measure the intensity of natural gas-fed fires in excavations for typical leak scenarios defined by AGA member companies.

Scope
Build instrumentation system, create excavation scenarios, run trials.
Three variables:
- Excavations
 - 4’ deep unshored
 - 6’ deep w/shoring box
- Two leak scenarios
 - 12” WC with a 7/8” diameter hole
 - 55 psig with a 3/8” diameter hole
- Burn times- 4, 6 and 8 seconds

Starting Conditions:
- sensors placed at key locations:
 identified by infrared imagery to be high heat areas
 position of worker in the excavation and standby person
- Leak located on the bottom of 4” pipe in each situation
- Pilot light lit within excavation prior to introduction of fuel
- Hi-resolution infrared camera and video equipment positioned to capture data

End Condition:
- Fuel supply ended at test time conclusion
The heat intensity reported is the highest heat intensity observed by any sensor during a specific test
4 ft excavation 12 inches wc
Greatest Learnings

- With relatively few exceptions observations confirmed heat intensity in typical excavations fires was 2 calories/cm²-second
- Within the excavation the highest heat intensity was observed at approximately 3’ off the floor of the excavation
- Outside the excavation the highest heat intensity occurred downwind of the excavation
FR PPE Garment Testing

Purpose/Scope:
• Use fire exposure times in the lab based on observations of escape time and fire extinguishing testing
• Use fire intensity of 2 calorie/cm2-second in the lab based on observations of fire intensity testing
• Report predicted body burn of various FR garments used by AGA members (all garments provided by AGA members)
• **2 Garment Ensembles**
 - With 100% cotton L/S
 - Without 100% cotton L/S

• **3 Garment Materials**
 - FR treated cotton
 - FR blends
 - Inherently FR

• Coveralls only; no FR rainwear, pants, shirts, etc.
• 99 tests completed in UL certified lab
• All tests witnessed by AGA members
• Burn times: 4, 6 & 8 seconds
• Predicted burn injury recorded for ea. test
Key Observations from Burn Testing:

- Significant differences in predicted body burn between garments and materials
- Significant differences in garment/material integrity after exposure to flame
Some Predicted Fatality Rates Exceeded 50%

Fatality rate from burn injury study

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>82</td>
<td>0</td>
</tr>
</tbody>
</table>

2015 American Burn Association Study
100% Cotton Long Sleeve Shirt Doubles Protection of FR Garments
One FR garment system resulted in < 10% body burn @ 8 second exposure
16.9 oz./sq. yd. (9.4 oz./sq. yd. quilting plus 7.5 oz. outer layer) inherently FR material

16.9 oz./sq. yd. quilted FR coveralls
Burn Test Observations:

- Stationary mannequin; no movement
- Some garments became brittle/broke open at 6 & 8 seconds
- Some garments crumbled during removal
- Significant smoke generation observed from blend materials
Burn Test Observations:

- Garment fit is critical (15% difference in predicted body burn)
- Performance of blends & FR-treated cotton garments was inconsistent; garment weight alone is not a reliable predictor of performance
- When normalized for fabric weights, inherently FR materials resulted in less predicted body burn than treated FR cottons or blends

Grand Average Performance - Normalized - With Long Sleeve Shirt

- Inherents With Long Sleeve Shirt
- FR Treated Cottons With Long Sleeve Shirt
- Blends With Long Sleeve Shirt

Grand Average Performance - Normalized - Without Long Sleeve Shirt

- Inherents Without Long Sleeve Shirt
- FR Treated Cottons Without Long Sleeve Shirt
- Blends Without Long Sleeve Shirt
Conclusions:

• Solely relying on escape time is not prudent
• Relying on extinguish time can be risky
 - Worker skill/experience matters
 - Starting position should be considered
• Excavation depth matters
• Worker agility matters
Learnings from FR Garment Testing:

- Lab conditions are similar to field
- 50+% predicted body burn for some garments
- Adding 100% cotton long sleeve shirt doubles protection of all FR tested
Ounce-for-ounce Inherently FR Provides More Protection

Grand Average Performance - Normalized - With Long Sleeve Shirt

- Inherents With Long Sleeve Shirt
- FR Treated Cottons With Long Sleeve Shirt
- Blends With Long Sleeve Shirt

Predicted Body Burn Multiplied By Avg. Weight

- 4 seconds: 0, 9.15, 8
- 6 seconds: 52, 155.5, 120
- 8 seconds: 108.5, 247, 272
Data Enables Informed Decisions
Related to Procedures & PPE

White paper available on AGA website:
“Natural Gas Workers and Natural Gas Fires”
Thank You

Philadelphia Gas Works
Xcel Energy
ONE Gas, Inc.
Vectren Co.
UGI Utilities Inc.
Columbia Gas of PA – NiSource
National Fuel Gas Company

Spire Inc.
Washington Gas Light Co.
Avista Utilities
Consolidated Edison, Inc.
Chesapeake Utilities Co.
Questar / Dominion Energy
DuPont Company