

Implications of Electrification and Natural Gas Pathways Towards U.S. Emissions Reductions

Northeast Gas Association Sales & Marketing Conference March 28, 2019

Proposals to reduce greenhouse gas emissions take many forms

Studies referencing electrification of building energy loads to achieve deep decarbonization goals

States and municipalities committing to pursue clean energy goals

381 US #ClimateMayors, representing 67.9 million Americans, have committed to adopt, honor and uphold the climate goals of the Paris Agreement

The Clean Energy Debate is Back in D.C.

GREEN **NEW DEAL**

A Closer Look at the Residential Market

Natural gas is the primary source for heating homes

Residential natural gas use accounts for only 4% of U.S. greenhouse gas emissions.

US Heating Systems by Fuel (Millions of Housing Units)

EPA Inventory of Greenhouse Gas Emissions & Sinks 2018 draft, data for 2016 Residential gas methane share based on gas consumption Residential electricity methane share based on gas for electricity consumption & residential electricity

Source: Energy Information Administration

Foundational Energy Facts Impacting Electrification Pathways for Decarbonization

- Winter generally requires much more energy than summer
- Peak energy requirements drives infrastructure planning

Implications of Policy-Driven Residential Electrification

An American Gas Association Study prepared by ICF

July 2018

Main Questions the Study Addresses

- 1. What are the impacts on the Power Generation and Transmission infrastructure?
- 2. Will policy-driven residential electrification actually reduce greenhouse gas emissions?
- 3. How will policy-driven residential electrification impact natural gas utility customers?
- 4. What would be the overall cost of policy-driven residential electrification?
- 5. How do the costs of policydriven residential electrification compare to other approaches to reduce greenhouse gas emissions?

Electrifying the entire residential sector would nearly double the U.S. electric grid's peak hourly demand.

Impact of Residential Electrification on Peak Winter Hourly Demand (GW)

Source: Implications of Policy-Driven Residential Electrification, 2018

Total GHG reduction potential from policydriven residential electrification is small.

GHG reduction potential is small and cost to consumers is high.

GHG Emissions Reduction Potential from Residential Electrification

Total Cost of Renewables-Only Case by Sector

Annual Per Household Cost of Electrification Policy

Regional Breakdown of Consumer Impacts

Annual Per-Household Cost of Electrification Policy (Renewables-Only)

Source: Implications of Policy-Driven Residential Electrification, 2018

Future Natural Gas Pathways for Reducing GHG Emissions

Continued Commitment to Energy Efficiency Programs

Natural gas utilities in the U.S. invest \$4 million in energy efficiency programs every day.

These investments have helped reduce residential household GHG emissions by 50% since 1970.

Developing and Deploying Energy Efficient Technologies in Homes and Buildings

Space Cooling, up to 45% Space Heating, up to 40%

> Gas heat pump

• IoT based thermostat

Building Envelope

- Water heating, up to 55%
- Absorption heat pump

Cooking, minimal change

- Gas stove
- Gas oven

Laundry, 55%

Gas dryerOzone

washing

25-40% GHG reduction potential on a customer basis

Advancing Renewable Sources of Supply

Renewable Natural Gas (RNG)

Thank you!

Rick Murphy Managing Director, Energy Markets rmurphy@aga.org

