

Bob BennettMeter Sizing and SelectionJune 20202020 Northeast Gas Association Gas Operations School

Welcome

Bob Bennett Honeywell Nebraska City, NE 30 Years Southwest Gas Corporation West Ohio Gas Company Robert.bennett@Honeywell.com

Gas Measurement Law

Billing in Volume (V_B) = V_{Meter} x $\left(\frac{P_M}{P_B}\right) x \left(\frac{T_B}{T_M}\right) x (F_{PV})^2$

Billing in Energy = V_{Meter} x $\left(\frac{P_{M}}{P_{B}}\right)$ x $\left(\frac{T_{B}}{T_{M}}\right)$ x $(F_{PV})^{2}$ x $\left(\frac{BTU}{FT^{3}}\right)$ x $\left(\frac{Therm}{100,000 \text{ BTU}}\right)$

= Metered Volume (Uncorrected)

- Absolute Metering Pressure
- Base Pressure

V_{Meter}

P_M

 P_B

 T_{B}

T_m

F_{pv}

- Absolute Base Temperature
- Absolute Metering Temperature
- Supercompressibility Factor

Measurement Components

- Tariffs and Codes
- Metering
- Regulation
- Instrumentation

"If at first you don't succeed, cheat."

Red Buttons

Honeywell Confidential © 2017 by Honeywell International Inc. All rights reserved.

Codes

Department of Transportation State Utility Commission Rules and Regulations National Fuel Gas Code Manufacturers Specifications and Recommendations Company Standards and Procedures AGA and/or ANSI Standards National Electrical Code API 1104 Welding

Tariffs – Billing in Volume $V_{Base} = V_{Meter} x \frac{P_M}{P_B} x \frac{T_B}{T_M} x F_{pv}^2$

Tariff (Rate Structure) defines: Units for Billing (Cubic Feet or Therms) Base Pressure (P_b) Base Temperature (T_b) Range of Heating Value Nature and Allowable Cost of Service Operating Practices

Tariffs – Billing in Energy

Billing in Energy = $V_{Meter} x \left(\frac{P_{M}}{P_{B}}\right) x \left(\frac{T_{B}}{T_{M}}\right) x (F_{PV})^{2} x \left(\frac{BTU}{FT^{3}}\right) x \left(\frac{Therm}{100,000 BTU}\right)$

AL AL ALLAND

Where E = Therms

Measurement Components

- Tariffs and Codes
- Metering
- Regulation
- Instrumentation

"Ideas are a dime a dozen. People who put them into action are priceless."

Unknown

Metering

Gas Measurement Law

$$V_{Base} = V_{Meter} x \frac{P_M}{P_B} x \frac{T_B}{T_M} x F_{pv}^2$$

Various types of meters provide the V_{Meter} , the Uncorrected Volume or the Volume registered by the meter.

Types of Meters – Positive Displacement

Positive Displacement

1. Diaphragm

Honeywell Confidential © 2017 by Honeywell International Inc. All rights reserved.

Positive Displacement

Diaphragm
Rotary

Honeywell Confidential © 2017 by Honeywell International Inc. All rights reserved.

Positive Displacement

- 1. Diaphragm
- 2. Rotary
- 3. Wet Test

Types of Meters – Inferential

Honeywell Confidential © 2017 by Honeywell International Inc. All rights reserved.

1. Turbine

- 1. Turbine
- 2. Orifice

- 1. Turbine
- 2. Orifice
- 3. Differential Head

- 1. Turbine
- 2. Orifice
- 3. Differential Head
- 4. Area Meter

- 1. Turbine
- 2. Orifice
- 3. Differential Head
- 4. Area Meter
- 5. Ultrasonic

- 1. Turbine
- 2. Orifice
- 3. Differential Head
- 4. Area Meter
- 5. Ultrasonic
- 6. Mass Meter

Measurement Components

- Tariffs and Codes
- Metering
- Regulation
- Instrumentation

"Some of those in the rear may not be able to hear me. Those of you in the front may want to go back and join them."

Unknown

Regulation

Gas Measurement Law

$$V_{Base} = V_{Meter} x \frac{P_M}{P_B} x \frac{T_B}{T_M} x F_{pv}^2$$

Regulation provides the P_M , the pressure on the gas flowing through the meter.

Regulation

Low Pressure Meter Sets

Fixed Factor Meter Sets

Line Pressure Meter Sets

22

Low Pressure Meter Sets

Meter measures gas at or near to base conditions (7" w.c.)

Honeywell Confidential © 2017 by Honeywell International Inc. All rights reserved.

Fixed Factor Meter Sets

Fixed Factor Meter Sets

Fixed Factor Meter Sets demand a constant delivery pressure through a positive displacement or turbine meter.

$$V_{Base} = V_{Meter} x \frac{P_M}{P_B} x \frac{T_B}{T_M} x F_{pv}^2$$

The metered volume (V_{Meter}) is multiplied by a "Fixed Pressure" Correction Factor.

Fixed Factor Meter Sets

Pressure Correction Factor = P_m/P_b Where:

 P_m = Flowing Pressure + Atmospheric Pressure P_b = Base Pressure

The prime requisite is accurate regulation over a range of flow rates going through the meter

Line Pressure Meter Sets

Line Pressure Meter Sets

Line Pressure Meter Sets have constantly changing pressures and/or temperatures flowing through the meter.

Line Pressure Meter Sets

The metered volume therefore must be multiplied by variable Pressure, Temperature and Supercompressibility Factors.

$$V_{Base} = V_{Meter} x \frac{P_M}{P_B} x \frac{T_B}{T_M} x F_{pv}^2$$

Measurement Components

- Tariffs and Codes
- Metering
- Regulation
- Instrumentation

"Thanks to the Interstate System, it is now possible to go coast to coast without seeing anything."

Charles Kuralt

Instrumentation

Gas Measurement Law

$$V_{Base} = V_{Meter} x \frac{P_M}{P_B} x \frac{T_B}{T_M} x F_{pv}^2$$

Instrumentation can provide P_m , T_m and F_{pv}

The gas components and/or characteristics to determine $F_{\mu\nu}{}^2$ Volumes based on various Basic Gas Laws

Correctors

Electronic Indexes

Chromatographs

Communications

- MODBUS programmable
 - 1x TCP/IP
 - 2x RS485 interface
- 4 digital outputs
- 2 digital inputs
- 4 analog outputs
- Integrated logging
 - Measurements as mean values (e.g. on hourly basis) or current values. Integrated logging of measurement system status and external events

Figure 3.4: General system setup

Odorization

Honeywell Confidential © 2017 by Honeywell International Inc. All rights reserved.

Moisture Analyzers

Honeywell Confidential © 2017 by Honeywell International Inc. All rights reserved.

Automatic Meter Reading

Automatic Meter Reading

Metercat Administrator Stations

Wireless Telemetry

Applications:

- Gas system pressure monitoring
- Distribution Metering
- Gas Pipeline Metering
- Gas Wellhead Metering
- Corrosion Monitoring
- Renewable power assemblies
- Serial Transparent Cellular Modem assemblies (3rd party equipment)

Technologies

- Cellular GSM/GPRS/HSPA, CDMA
- ISM Radio (licensed & unlicensed; incl. 902 MHz)
- LEO Satellite
- GEO Satellite
- Power Technologies: Solar; Class 1 Division 2 AC Power; Thermal Electric Generator; advanced battery systems

MSA Considerations

Type of Customer Connected Load Diversity Factor Pressure Needed

MSA Considerations

Initial Cost Future Maintenance Costs Overall Accuracy Location, Access Long Term Performance Rate of Return on Investment

<u>Type of Load</u> <u>B</u>

BTU Rating

Water Heater Furnace Dryer Range *Total* Pool Heater BBQ Spa *Total* 40,000 100,000 20,000 40,000 200,000

200,000

One Cubic Foot of Natural Gas = Approximately 1000 BTUs of Heating Value

One Therm = Approximately 100 ft^3 of Natural Gas

Type of load

<u>Type of Load</u>	<u>BTU Rating</u>	<u>Γι°/ΠΟυΓ</u>
Water Heater	40,000	40
Furnace	100,000	100
Dryer	20,000	20
Range	40,000	40
Total	200,000	200
Pool Heater		
BBQ		
Spa		
Total	200,000	200

DTIL Dating

Diaphragm Meter Capacity Table

Meter Capacities

	Diaphragm Meter Capacities * scfh (Sm³/h)												
Line Pressure	AT-210	AT-250 AC-250 AM-250 AR-250	AL-425	AC-630	AL-800	AL-1000	AL-1400	AL-2300	AL-5000				
0.25 psig (17 mBarg)	210 (5.9)	250 (7.1)	425 (12.0)	630 (17.8)	800 (22.7)	1000 (28.3)	1400 (39.6)	2300 (65.1)	5000 (141.6)				
2 psig (14 mBarg)	424 (12.0)	550 (15.6)	955 (27.0)	1390 (39.4)	1850 (52.4)	2400 (68.0)	3265 (92.5)	5440 (154.0)	12000 (339.8)				
5 psig (345 mBarg)	462 (13.1)	593 (16.8)	1100 (31.1)	1515 (42.9)	2100 (59.5)	2700 (76.5)	3700 (104.8)	6200 (175.6)	13500 (382.3)				
10 psig (690 mBarg)	-	-	1350 (38.2)	1710 (48.4)	2600 (73.6)	3400 (96.3)	4600 (130.3)	7700 (218.1)	1700 (481.4)				
20 psig (1.4 Barg)	-	-	1700 (48.1)	2010 (56.9)	3200 (90.6)	4100 (116.1)	5600 (158.6)	9400 (266.2)	20600 (583.4)				
25 psig (1.7 Barg)	-	-	1880 (53.2)	2160 (61.2)	3500 (99.1)	4600 (130.3)	6200 (175.6)	10400 (294.5)	23000 (654.4)				
50 psig (3.4 Barg)	-	-	-	-	5100 (144.4)	6600 (186.9)	9000 (254.9)	15000 (424.8)	33000 (934.6)				
75 psig (5.2 Barg)	-	-	-	-	6600 (186.9)	8540 (241.8)	11650 (329.9)	19400 (549.4)	42700 (1209.1)				
100 psig (6.9 Barg)	-	-	-	-	7800 (220.9)	10100 (286.0)	13800 (390.8)	23000 (651.4)	50500 (1,430.2)				

* Capacity data based upon natural gas with specific gravity of 0.60.

<u>Type of Load</u> <u>BTU Rating</u> <u>Ft³/Hour</u>

10 - 250,000 BTU Furnaces 5 - 50,000 BTU Heaters 1 - 2,500,000 BTU Boilers *Total*

<i>Type of Load</i>	<u>BTU Rating</u>	<u>Ft³/Hour</u>
10 - 250,000 BTH Eurnaces	2,500,000	2,500
5 - 50,000 BTIL Heaters	250,000	250
1 - 2,500,000 BTU Boilers	2,500,000	2,500
Total	5,250,000	5,250

Design a Meter Set

Q_{connected Load} = 5,250 scfh Maximum Inlet Pressure = 60 psig

- Minimum Inlet Pressure = 30 psig
- Outlet Pressure = 5 PSIG
- Customer needs 7" w.c. @ Burners
- No Diversity Factor
- $Q_{minimum} = 10 \text{ scfh}$

Fixed Factor Meter Sets

Diaphragm Meter Capacity Table

Meter Capacities

	Diaphragm Meter Capacities * scfh (Sm³/h)												
Line Pressure	AT-210	AT-250 AC-250 AM-250 AR-250	AL-425	AC-630	AL-800	AL-1000	AL-1400	AL-2300	AL-5000				
0.25 psig (17 mBarg)	210 (5.9)	250 (7.1)	425 (12.0)	630 (17.8)	800 (22.7)	1000 (28.3)	1400 (39.6)	2300 (65.1)	5000 (141.6)				
2 psig (14 mBarg)	424 (12.0)	550 (15.6)	955 (27.0)	1390 (39.4)	1850 (52.4)	2400 (68.0)	3265 (92.5)	5440 (154.0)	12000 (339.8)				
5 psig (345 mBarg)	462 (13.1)	593 (16.8)	1100 (31.1)	1515 (42.9)	2100 (59.5)	2700 (76.5)	3700 (104.8)	6200 (175.6)	13500 (382.3)				
10 psig (690 mBarg)	-	-	1350 (38.2)	1710 (48.4)	2600 (73.6)	3400 (96.3)	4600 (130.3)	7700 (218.1)	1700 (481.4)				
20 psig (1.4 Barg)	-	-	1700 (48.1)	2010 (56.9)	3200 (90.6)	4100 (116.1)	5600 (158.6)	9400 (266.2)	20600 (583.4)				
25 psig (1.7 Barg)	-	-	1880 (53.2)	2160 (61.2)	3500 (99.1)	4600 (130.3)	6200 (175.6)	10400 (294.5)	23000 (654.4)				
50 psig (3.4 Barg)	-	-	-	-	5100 (144.4)	6600 (186.9)	9000 (254.9)	15000 (424.8)	33000 (934.6)				
75 psig (5.2 Barg)	-	-	-	-	6600 (186.9)	8540 (241.8)	11650 (329.9)	19400 (549.4)	42700 (1209.1)				
100 psig (6.9 Barg)	-	-	-	-	7800 (220.9)	10100 (286.0)	13800 (390.8)	23000 (651.4)	50500 (1,430.2)				

* Capacity data based upon natural gas with specific gravity of 0.60.

Rotary Meter Capacity Table

SIZING CI	HART										
Μ	odel	3.	5M/G65	5.5M	/G100	9M/	G160	14M/	G250	23M/	/G400
psig	[Barg]				Cor	rected Capaci	ty in scfh [sm³	/h)			
0.25	[0.0]	3,500	[100]	5,500	[160]	9,000	[250]	14,000	[400]	23,000	[650]
2	[0.1]	3,900	[110]	6,100	[170]	10,000	[280]	15,600	[440]	25,300	[715]
5	[0.3]	4,600	[130]	7,200	[200]	11,900	[340]	18,400	[520]	30,400	[850]
10	[0.7]	5,800	[160]	9,100	[260]	14,900	[420]	23,200	[660]	38,100	[1,070]
20	[1.4]	8,200	[230]	12,800	[360]	21,000	[590]	32,700	[930]	53,700	[1,510]
30	[2.1]	10,500	[300]	16,600	[470]	27,100	[770]	42,200	[1,190]	69,300	[1,930]
40	[2.8]	12,900	[370]	20,300	[570]	33,200	[940]	51,700	[1,460]	84,800	[2,370]
50	[3.4]	15,300	[430]	24,000	[680]	39,300	[1,110]	61,200	[1,730]	100,400	[2,810]
60	[4.1]	17,700	[500]	27,800	[790]	45,500	[1,290]	70,700	[2,000]	116,300	[3,250]
75	[5.2]	21,200	[600]	33,400	[950]	54,600	[1,550]	85,000	[2,410]	139,500	[3,920]
100	[6.9]	27,200	[770]	42,700	[1,210]	69,900	[1,980]	108,700	[3,080]	178,600	[5,000]
150	[10.3]	39,100	[1,110]	61,400	[1,740]	100,400	[2,840]	156,300	[4,430]	256,700	[7,200]
175	[12.1]	45,000	[1,270]	70,700	[2,000]	115,700	[3,280]	180,000	[5,100]	296,700	[8,290]
250	[17.2]	62,800	[1,780]	98,700	[2,790]	161,500	[4,570]	251,300	[7,120]	412,700	[11,580]
290	[20.0]	72,300	[2,050]	113,700	[3,220]	186,000	[5,270]	289,300	[8,190]	475,300	[13,300]

Note: All capacities are based on 14.4 psia atmospheric pressure, 14.73 psia base pressure, and 60° F base temperature.

Turbine Meter Capacity Table

3" GT, Output Drive = 100 Cubic Feet, 45° Rotor

Line Pressure (PSIG)	Qmax MSCFH	Qmin MSCFH	Range Qmax/Qmin	Min. Actual Flow Rate MACFH	Press. Drop in W.C.
0.25	10	0.8	12	0.83	4.5
5	13	1.0	14	0.73	6.0
10	17	1.1	15	0.65	7.5
15	20	1.2	17	0.59	9.0
20	23	1.3	18	0.55	10.5
25	27	1.4	20	0.51	12.1
50	44	1.8	25	0.40	19.7
75	61	2.1	30	0.34	27.3
100	79	2.4	33	0.30	35.0
125	97	2.6	37	0.28	42.6
150	114	2.9	40	0.30	50.2
175	132	3.1	43	0.24	57.9
200	150	3.3	46	0.23	65.5
275	205	3.9	53	0.20	88.4
300	224	4.0	55	0.19	96.1
400	300	4.7	64	0.17	127.0
500	379	5.3	71	0.15	157.0
600	460	5.9	78	0.14	188.0
700	544	6.5	84	0.13	218.0
800	630	7.1	89	0.13	249.0
900	719	7.6	95	0.12	279.0
1000	810	8.1	100	0.12	310.0
1100	904	8.7	104	0.12	340.0
1200	1000	9.2	109	0.11	371.0
1300	1098	9.7	113	0.11	402.0
1400	1197	10.2	118	0 11	432.0

Note: Capacity Table values established @ base pressure of 14.73 PSIA and base temperature of 60°F; 0.60 specific gravity gas. Supercompressibility included.

Fixed Factor Meter Sets

THE POWER OF CONNECTED

1804 PFM Pilot-Operated Regulator

	CAPACITY (SCFH) 2" VALVE BODY														
	5 pcl cet, ±1% abc.														
INLET				OR	IFICE										
(psig)	1/4"	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1-1/4"							
10	1,300	2,400	3,900	4,200	7,400	4,400	9,600	12,300							
15	1,800	3,400	5,100	6,500	11,000	9,800	16,500	22,600							
20	2,100	4,000	6,300	9,800	13,400	12,000	21,600	29,600							
30	2,800	6,500	8,200	17,100	18,300	21,500	30,800	43,200							
40	3,400	6,700	13,400	22,400	22,400	26,300	39,800	45,600							
60	5,100	11,400	17,600	32,600	34,800	32,700	54,400	40,100							
80	5,900	15,600	23,200	36,100	37,000	37,300	46,000	40,700							
100	7,200	18,900	28,100	28,100	25,600	18,100	46,400								
125	10,500	18,700	28,600	29,700	31,200	9,200									

Fixed Factor Meter Sets

Design a Meter Set

 $Q_{connected \ Load} = 5,250 \ scfh$ Maximum Inlet Pressure = 60 psig Minimum Inlet Pressure = 30 psig Outlet Pressure = 2 PSIG Customer needs 7" w.c. @ Burners No Diversity Factor $Q_{minimum} = 10 \ scfh$

Fixed Factor Meter Sets

Diaphragm Meter Capacity Table

Meter Capacities

	Diaphragm Meter Capacities * scfh (Sm³/h)												
Line Pressure	AT-210	AT-250 AC-250 AM-250 AR-250	AL-425	AC-630	AL-800	AL-1000	AL-1400	AL-2300	AL-5000				
0.25 psig (17 mBarg)	210 (5.9)	250 (7.1)	425 (12.0)	630 (17.8)	800 (22.7)	1000 (28.3)	1400 (39.6)	2300 (65.1)	5000 (141.6)				
2 psig (14 mBarg)	424 (12.0)	550 (15.6)	955 (27.0)	1390 (39.4)	1850 (52.4)	2400 (68.0)	3265 (92.5)	5440 (154.0)	12000 (339.8)				
5 psig (345 mBarg)	462 (13.1)	593 (16.8)	1100 (31.1)	1515 (42.9)	2100 (59.5)	2700 (76.5)	3700 (104.8)	6200 (175.6)	13500 (382.3)				
10 psig (690 mBarg)	-	-	1350 (38.2)	1710 (48.4)	2600 (73.6)	3400 (96.3)	4600 (130.3)	7700 (218.1)	1700 (481.4)				
20 psig (1.4 Barg)	-	-	1700 (48.1)	2010 (56.9)	3200 (90.6)	4100 (116.1)	5600 (158.6)	9400 (266.2)	20600 (583.4)				
25 psig (1.7 Barg)	-	-	1880 (53.2)	2160 (61.2)	3500 (99.1)	4600 (130.3)	6200 (175.6)	10400 (294.5)	23000 (654.4)				
50 psig (3.4 Barg)	-	-	-	-	5100 (144.4)	6600 (186.9)	9000 (254.9)	15000 (424.8)	33000 (934.6)				
75 psig (5.2 Barg)	-	-	-	-	6600 (186.9)	8540 (241.8)	11650 (329.9)	19400 (549.4)	42700 (1209.1)				
100 psig (6.9 Barg)	-	-	-	-	7800 (220.9)	10100 (286.0)	13800 (390.8)	23000 (651.4)	50500 (1,430.2)				

* Capacity data based upon natural gas with specific gravity of 0.60.

Rotary Meter Capacity Table

SIZING CI	HART										
Μ	odel	3.	5M/G65	5.5M	/G100	9M/	G160	14M/	G250	23M/	/G400
psig	[Barg]				Cor	rected Capaci	ty in scfh [sm³	/h)			
0.25	[0.0]	3,500	[100]	5,500	[160]	9,000	[250]	14,000	[400]	23,000	[650]
2	[0.1]	3,900	[110]	6,100	[170]	10,000	[280]	15,600	[440]	25,300	[715]
5	[0.3]	4,600	[130]	7,200	[200]	11,900	[340]	18,400	[520]	30,400	[850]
10	[0.7]	5,800	[160]	9,100	[260]	14,900	[420]	23,200	[660]	38,100	[1,070]
20	[1.4]	8,200	[230]	12,800	[360]	21,000	[590]	32,700	[930]	53,700	[1,510]
30	[2.1]	10,500	[300]	16,600	[470]	27,100	[770]	42,200	[1,190]	69,300	[1,930]
40	[2.8]	12,900	[370]	20,300	[570]	33,200	[940]	51,700	[1,460]	84,800	[2,370]
50	[3.4]	15,300	[430]	24,000	[680]	39,300	[1,110]	61,200	[1,730]	100,400	[2,810]
60	[4.1]	17,700	[500]	27,800	[790]	45,500	[1,290]	70,700	[2,000]	116,300	[3,250]
75	[5.2]	21,200	[600]	33,400	[950]	54,600	[1,550]	85,000	[2,410]	139,500	[3,920]
100	[6.9]	27,200	[770]	42,700	[1,210]	69,900	[1,980]	108,700	[3,080]	178,600	[5,000]
150	[10.3]	39,100	[1,110]	61,400	[1,740]	100,400	[2,840]	156,300	[4,430]	256,700	[7,200]
175	[12.1]	45,000	[1,270]	70,700	[2,000]	115,700	[3,280]	180,000	[5,100]	296,700	[8,290]
250	[17.2]	62,800	[1,780]	98,700	[2,790]	161,500	[4,570]	251,300	[7,120]	412,700	[11,580]
290	[20.0]	72,300	[2,050]	113,700	[3,220]	186,000	[5,270]	289,300	[8,190]	475,300	[13,300]

Note: All capacities are based on 14.4 psia atmospheric pressure, 14.73 psia base pressure, and 60° F base temperature.

Turbine Meter Capacity Table

3" GT, Output Drive = 100 Cubic Feet, 45° Rotor

Line Pressure (PSIG)	Qmax MSCFH	Qmin MSCFH	Range Qmax/Qmin	Min. Actual Flow Rate MACFH	Press. Drop in W.C.
0.25	10	0.8	12	0.83	4.5
5	13	1.0	14	0.73	6.0
10	17	1.1	15	0.65	7.5
15	20	1.2	17	0.59	9.0
20	23	1.3	18	0.55	10.5
25	27	1.4	20	0.51	12.1
50	44	1.8	25	0.40	19.7
75	61	2.1	30	0.34	27.3
100	79	2.4	33	0.30	35.0
125	97	2.6	37	0.28	42.6
150	114	2.9	40	0.30	50.2
175	132	3.1	43	0.24	57.9
200	150	3.3	46	0.23	65.5
275	205	3.9	53	0.20	88.4
300	224	4.0	55	0.19	96.1
400	300	4.7	64	0.17	127.0
500	379	5.3	71	0.15	157.0
600	460	5.9	78	0.14	188.0
700	544	6.5	84	0.13	218.0
800	630	7.1	89	0.13	249.0
900	719	7.6	95	0.12	279.0
1000	810	8.1	100	0.12	310.0
1100	904	8.7	104	0.12	340.0
1200	1000	9.2	109	0.11	371.0
1300	1098	9.7	113	0.11	402.0
1400	1197	10.2	118	0 11	432.0

Note: Capacity Table values established @ base pressure of 14.73 PSIA and base temperature of 60°F; 0.60 specific gravity gas. Supercompressibility included.

Fixed Factor Meter Sets

THE POWER OF CONNECTED

1805 PFM Pilot-Operated Regulator

	CAPACITY (SCFH) 2" VALVE BODY												
	2 pai set, ±1% abs. ORIEICE												
(psig)	1/4"	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1-1/4"					
5	1,100	2,300	3,400	3,200	4,400	4,300	6,000	10,100					
10	1,700	3,800	5,800	8,200	10,700	11,600	13,300	16,800					
15	2,400	5,200	5,200 7,400 11,600 14,300 12,900 18,500 25,300										
20	2,900	5,700	9,200	15,500	18,100	18,200	23,200	31,700					
30	3,600	7,600	13,300	20,100	26,600	29,300	31,700	40,800					
40	4,400	9,200	15,700	26,100	32,600	33,500	39,800	41,100					
60	6,000	13,200	14,500	30,500	41,700	21,200	52,900	46,200					
80	7,600	16,900	18,400	25,800	35,200	20,700	57,500	30,500					
100	9,300	14,700	22,300	18,800	25,600	25,100	55,700						
125	8,700	17,900	27,100	22,900	31,200	30,600							

Fixed Factor Meter Sets

Line Pressure Meter Sets

Diaphragm Meter Capacity Table

Meter Capacities

	Diaphragm Meter Capacities * scfh (Sm³/h)												
Line Pressure	AT-210	AT-250 AC-250 AM-250 AR-250	AL-425	AC-630	AL-800	AL-1000	AL-1400	AL-2300	AL-5000				
0.25 psig (17 mBarg)	210 (5.9)	250 (7.1)	425 (12.0)	630 (17.8)	800 (22.7)	1000 (28.3)	1400 (39.6)	2300 (65.1)	5000 (141.6)				
2 psig (14 mBarg)	424 (12.0)	550 (15.6)	955 (27.0)	1390 (39.4)	1850 (52.4)	2400 (68.0)	3265 (92.5)	5440 (154.0)	12000 (339.8)				
5 psig (345 mBarg)	462 (13.1)	593 (16.8)	1100 (31.1)	1515 (42.9)	2100 (59.5)	2700 (76.5)	3700 (104.8)	6200 (175.6)	13500 (382.3)				
10 psig (690 mBarg)	-	-	1350 (38.2)	1710 (48.4)	2600 (73.6)	3400 (96.3)	4600 (130.3)	7700 (218.1)	1700 (481.4)				
20 psig (1.4 Barg)	-	-	1700 (48.1)	2010 (56.9)	3200 (90.6)	4100 (116.1)	5600 (158.6)	9400 (266.2)	20600 (583.4)				
25 psig (1.7 Barg)	-	-	1880 (53.2)	2160 (61.2)	3500 (99.1)	4600 (130.3)	6200 (175.6)	10400 (294.5)	23000 (654.4)				
50 psig (3.4 Barg)	-	-	-	-	5100 (144.4)	6600 (186.9)	9000 (254.9)	15000 (424.8)	33000 (934.6)				
75 psig (5.2 Barg)	-	-	-	-	6600 (186.9)	8540 (241.8)	11650 (329.9)	19400 (549.4)	42700 (1209.1)				
100 psig (6.9 Barg)	-	-	-	-	7800 (220.9)	10100 (286.0)	13800 (390.8)	23000 (651.4)	50500 (1,430.2)				

* Capacity data based upon natural gas with specific gravity of 0.60.

Rotary Meter Capacity Table

SIZING CHART											
Model		3.5M/G65		5.5M/G100		9M/G160		14M/G250		23M/G400	
psig	[Barg]	Corrected Capacity in scfh [sm ³ /h)									
0.25	[0.0]	3,500	[100]	5,500	[160]	9,000	[250]	14,000	[400]	23,000	[650]
2	[0.1]	3,900	[110]	6,100	[170]	10,000	[280]	15,600	[440]	25,300	[715]
5	[0.3]	4,600	[130]	7,200	[200]	11,900	[340]	18,400	[520]	30,400	[850]
10	[0.7]	5,800	[160]	9,100	[260]	14,900	[420]	23,200	[660]	38,100	[1,070]
20	[1.4]	8,200	[230]	12,800	[360]	21,000	[590]	32,700	[930]	53,700	[1,510]
30	[2.1]	10,500	[300]	16,600	[470]	27,100	[770]	42,200	[1,190]	69,300	[1,930]
40	[2.8]	12,900	[370]	20,300	[570]	33,200	[940]	51,700	[1,460]	84,800	[2,370]
50	[3.4]	15,300	[430]	24,000	[680]	39,300	[1,110]	61,200	[1,730]	100,400	[2,810]
60	[4.1]	17,700	[500]	27,800	[790]	45,500	[1,290]	70,700	[2,000]	116,300	[3,250]
75	[5.2]	21,200	[600]	33,400	[950]	54,600	[1,550]	85,000	[2,410]	139,500	[3,920]
100	[6.9]	27,200	[770]	42,700	[1,210]	69,900	[1,980]	108,700	[3,080]	178,600	[5,000]
150	[10.3]	39,100	[1,110]	61,400	[1,740]	100,400	[2,840]	156,300	[4,430]	256,700	[7,200]
175	[12.1]	45,000	[1,270]	70,700	[2,000]	115,700	[3,280]	180,000	[5,100]	296,700	[8,290]
250	[17.2]	62,800	[1,780]	98,700	[2,790]	161,500	[4,570]	251,300	[7,120]	412,700	[11,580]
290	[20.0]	72,300	[2,050]	113,700	[3,220]	186,000	[5,270]	289,300	[8,190]	475,300	[13,300]

Note: All capacities are based on 14.4 psia atmospheric pressure, 14.73 psia base pressure, and 60° F base temperature.

Turbine Meter Capacity Table

3" GT, Output Drive = 100 Cubic Feet, 45° Rotor

Line Pressure (PSIG)	Pressure Qmax (PSIG) MSCFH		Range Qmax/Qmin	Min. Actual Flow Rate MACFH	Press. Drop in W.C.
0.25	10	0.8	12	0.83	4.5
5	13	1.0	14	0.73	6.0
10	17	1.1	15	0.65	7.5
15	20	1.2	17	0.59	9.0
20	23	1.3	18	0.55	10.5
25	27	1.4	20	0.51	12.1
50	44	1.8	25	0.40	19.7
75	61	2.1	30	0.34	27.3
100	79	2.4	33	0.30	35.0
125	97	2.6	37	0.28	42.6
150	114	2.9	40	0.30	50.2
175	132	3.1	43	0.24	57.9
200	150	3.3	46	0.23	65.5
275	205	3.9	53	0.20	88.4
300	224	4.0	55	0.19	96.1
400	300	4.7	64	0.17	127.0
500	379	5.3	71	0.15	157.0
600	460	5.9	78	0.14	188.0
700	544	6.5	84	0.13	218.0
800	630	7.1	89	0.13	249.0
900	719	7.6	95	0.12	279.0
1000	810	8.1	100	0.12	310.0
1100	904	8.7	104	0.12	340.0
1200	1000	9.2	109	0.11	371.0
1300	1098	9.7	113	0.11	402.0
1400	1197	10.2	118	0.11	432.0

Note: Capacity Table values established @ base pressure of 14.73 PSIA and base temperature of 60°F; 0.60 specific gravity gas. Supercompressibility included.

Line Pressure Meter Sets

Industrial Regulator Capacity Table

Inlet psi	Orifice Size – All Models With Silver Holder								
	1-1/4"	1"	7/8"	3/4"	5/8"	1/2"	3/8"	1/4"	
5									SPRING NO.
10	7,000	5,600	4,800	4,800	3,700	3,100	2,200	1,200	71424P023
15	9,500	7,600	6,200	6,200	4,800	4,200	3,000	1,850	
20	11,800	9,750	7,600	7,600	6,000	5,300	3,800	2,200	3 psi to 5 psi
30		12,700	10,500	10,500	8,300	7,200	5,000	2,900	Sec: 5 psi Desen: 1 psi
40			13,000	13,000	9,400	8,700	6,500	3,500	Dioop: Tpsi
60			17,200	17,200	12,700	12,000	8,900	4,900	
80		L		20,000	16,000	15,200	10,800	6,200	
100							12,700	7,500	
125							<u> </u> ا	8,100	

. .

Line Pressure Meter Sets

Measurement Diaphragm Rotary Turbine Ultrasonic Orifice Other **Multiple Runs By-pass**

Regulation Low Pressure Fixed Factor Line Pressure Pressure Protection

Cathodic Protection Security Communication Valves **Other Equipment BTU** Analyzers Odorization Maintenance Training **Tools/Materials**

Consider Installation, Operational &, Maintenance Requirements **Gauge Openings** Standardize As-built drawings Protection Weather **Electrical** Vandalism **Damage from Outside Forces**

Valves Filtration/Gas Conditioning Avoid Turbulence Gas Heaters Isolation for maintenance Above vs. below ground installations Viewing gauges Dual runs

AS

Proper regulator for conditions Corrosion Control Operation of relief valves Sizing considerations Main regulators Relief valves Monitor

Piping **Supports** Main runs **Relief valve Control Piping Gas Velocity** Location of changes in pipe size < 70 ft/sec - inlet < 200 ft/sec - outlet Long radius ells Control piping - 1/4" or 1/2"

Filters Use where needed Differential indicators Maintenance Schedule Clearance Serving pilot regulators

Sensing/Bleed Lines Right size Right distance from regulator; run to where control is desired Not subject to vibration Mechanical damage Valves that show position Consider corrosion control

Station Maintenance

- 1. Schedule
- 2. Tools
- 3. Training
- 4. Parts
- 5. Drawings
- 6. Correct lubricants
- 7. Depressurize
- 8. Housekeeping

Station Maintenance

- 9. Avoid excessive grease & sealing compound
- 10. Check for free movement in linkages
- 11. Check for leakage
- 12. Check valves in proper position

Questions?

Robert.bennett@Honeywell.com

